4 research outputs found

    Partially Lazy Classification of Cardiovascular Risk via Multi-way Graph Cut Optimization

    Get PDF
    Cardiovascular disease (CVD) is considered a leading cause of human mortality with rising trends worldwide. Therefore, early identification of seemingly healthy subjects at risk is a priority. For this purpose, we propose a novel classification algorithm that provides a sound individual risk prediction, based on a non-invasive assessment of retinal vascular function. so-called lazy classification methods offer reduced time complexity by saving model construction time and better adapting to newly available instances, when compared to well-known eager methodS. Lazy methods are widely used due to their simplicity and competitive performance. However, traditional lazy approaches are more vulnerable to noise and outliers, due to their full reliance on the instances' local neighbourhood for classification. In this work, a learning method based on Graph Cut Optimization called GCO mine is proposed, which considers both the local arrangements and the global structure of the data, resulting in improved performance relative to traditional lazy methodS. We compare GCO mine coupled with genetic algorithms (hGCO mine) with established lazy and eager algorithms to predict cardiovascular risk based on Retinal Vessel Analysis (RVA) data. The highest accuracy of 99.52% is achieved by hGCO mine. The performance of GCO mine is additionally demonstrated on 12 benchmark medical datasets from the UCI repository. In 8 out of 12 datasets, GCO mine outperforms its counterpartS. GCO mine is recommended for studies where new instances are expected to be acquired over time, as it saves model creation time and allows for better generalization compared to state of the art methodS

    DETECT-LC: A 3D Deep Learning and Textural Radiomics Computational Model for Lung Cancer Staging and Tumor Phenotyping Based on Computed Tomography Volumes

    No full text
    Lung Cancer is one of the primary causes of cancer-related deaths worldwide. Timely diagnosis and precise staging are pivotal for treatment planning, and thus can lead to increased survival rates. The application of advanced machine learning techniques helps in effective diagnosis and staging. In this study, a multistage neurobased computational model is proposed, DETECT-LC learning. DETECT-LC handles the challenge of choosing discriminative CT slices for constructing 3D volumes, using Haralick, histogram-based radiomics, and unsupervised clustering. ALT-CNN-DENSE Net architecture is introduced as part of DETECT-LC for voxel-based classification. DETECT-LC offers an automatic threshold-based segmentation approach instead of the manual procedure, to help mitigate this burden for radiologists and clinicians. Also, DETECT-LC presents a slice selection approach and a newly proposed relatively light weight 3D CNN architecture to improve existing studies performance. The proposed pipeline is employed for tumor phenotyping and staging. DETECT-LC performance is assessed through a range of experiments, in which DETECT-LC attains outstanding performance surpassing its counterparts in terms of accuracy, sensitivity, F1-score and Area under Curve (AuC). For histopathology classification, DETECT-LC average performance achieved an improvement of 20% in overall accuracy, 0.19 in sensitivity, 0.16 in F1-Score and 0.16 in AuC over the state of the art. A similar enhancement is reached for staging, where higher overall accuracy, sensitivity and F1-score are attained with differences of 8%, 0.08 and 0.14

    <i>DETECT-LC</i>: A 3D Deep Learning and Textural Radiomics Computational Model for Lung Cancer Staging and Tumor Phenotyping Based on Computed Tomography Volumes

    No full text
    Lung Cancer is one of the primary causes of cancer-related deaths worldwide. Timely diagnosis and precise staging are pivotal for treatment planning, and thus can lead to increased survival rates. The application of advanced machine learning techniques helps in effective diagnosis and staging. In this study, a multistage neurobased computational model is proposed, DETECT-LC learning. DETECT-LC handles the challenge of choosing discriminative CT slices for constructing 3D volumes, using Haralick, histogram-based radiomics, and unsupervised clustering. ALT-CNN-DENSE Net architecture is introduced as part of DETECT-LC for voxel-based classification. DETECT-LC offers an automatic threshold-based segmentation approach instead of the manual procedure, to help mitigate this burden for radiologists and clinicians. Also, DETECT-LC presents a slice selection approach and a newly proposed relatively light weight 3D CNN architecture to improve existing studies performance. The proposed pipeline is employed for tumor phenotyping and staging. DETECT-LC performance is assessed through a range of experiments, in which DETECT-LC attains outstanding performance surpassing its counterparts in terms of accuracy, sensitivity, F1-score and Area under Curve (AuC). For histopathology classification, DETECT-LC average performance achieved an improvement of 20% in overall accuracy, 0.19 in sensitivity, 0.16 in F1-Score and 0.16 in AuC over the state of the art. A similar enhancement is reached for staging, where higher overall accuracy, sensitivity and F1-score are attained with differences of 8%, 0.08 and 0.14

    HyCAD-OCT: A Hybrid Computer-Aided Diagnosis of Retinopathy by Optical Coherence Tomography Integrating Machine Learning and Feature Maps Localization

    No full text
    Optical Coherence Tomography (OCT) imaging has major advantages in effectively identifying the presence of various ocular pathologies and detecting a wide range of macular diseases. OCT examinations can aid in the detection of many retina disorders in early stages that could not be detected in traditional retina images. In this paper, a new hybrid computer-aided OCT diagnostic system (HyCAD) is proposed for classification of Diabetic Macular Edema (DME), Choroidal Neovascularization (CNV) and drusen disorders, while separating them from Normal OCT images. The proposed HyCAD hybrid learning system integrates the segmentation of Region of Interest (RoI), based on central serious chorioretinopathy (CSC) in Spectral Domain Optical Coherence Tomography (SD-OCT) images, with deep learning architectures for effective diagnosis of retinal disorders. The proposed system assimilates a range of techniques including RoI localization and feature extraction, followed by classification and diagnosis. An efficient feature fusion phase has been introduced for combining the OCT image features, extracted by Deep Convolutional Neural Network (CNN), with the features extracted from the RoI segmentation phase. This fused feature set is used to predict multiclass OCT retina disorders. The proposed segmentation phase of retinal RoI regions adds substantial contribution as it draws attention to the most significant areas that are candidate for diagnosis. A new modified deep learning architecture (Norm-VGG16) is introduced integrating a kernel regularizer. Norm-VGG16 is trained from scratch on a large benchmark dataset and used in RoI localization and segmentation. Various experiments have been carried out to illustrate the performance of the proposed system. Large Dataset of Labeled Optical Coherence Tomography (OCT) v3 benchmark is used to validate the efficiency of the model compared with others in literature. The experimental results show that the proposed model achieves relatively high-performance in terms of accuracy, sensitivity and specificity. An average accuracy, sensitivity and specificity of 98.8%, 99.4% and 98.2% is achieved, respectively. The remarkable performance achieved reflects that the fusion phase can effectively improve the identification ratio of the urgent patients&rsquo; diagnostic images and clinical data. In addition, an outstanding performance is achieved compared to others in literature
    corecore